
Vertex Weighting-Based Tabu Search for p-Center Problem

Qingyun Zhang1 , Zhipeng Lü1 , Zhouxing Su1∗ , Chumin Li2 , Yuan Fang1 and Fuda Ma3

1SMART, School of Computer Science and Technology, Huazhong University of Science and
Technology, China

2MIS, Université de Picardie Jules Verne, France
3Huawei Cloud Alkaid Lab, Huawei Technologies Co., Ltd., China

suzhouxing@hust.edu.cn

Abstract

The p-center problem consists of choosing p cen-
ters from a set of candidates to minimize the max-
imum distance between any client and its assigned
center. In this paper, we transform the p-center
problem into a series of set covering subproblems,
and propose a vertex weighting-based tabu search
(VWTS) algorithm to solve them. The proposed
VWTS algorithm integrates distinguishing features
such as a vertex weighting technique and a tabu
search strategy to help the search to jump out of the
local optima. Computational experiments on 138
most commonly used benchmark instances show
that VWTS is highly competitive comparing to the
state-of-the-art methods in spite of its simplicity.
As a well-known NP-hard problem which has al-
ready been studied for over half a century, it is a
challenging task to break the records on these clas-
sic datasets. Yet VWTS improves the best known
results for 14 out of 54 large instances, and matches
the optimal results for all remaining 84 ones. In ad-
dition, the computational time taken by VWTS is
much shorter than other algorithms in the literature.

1 Introduction
As a classical combinatorial optimization problem introduced
by Hakimi [1964], the p-center problem consists of choosing
p centers from a set of candidate centers to serve a set of
clients, where each client is served by one of its closest cen-
ters. There is a serving arc if a center serves a client, and the
length of the longest serving arc is the covering radius. The
objective of this problem is to minimize the covering radius.

The p-center problem has a wide range of real-world ap-
plications. For instance, one can formulate several impor-
tant problems in city planning as the p-center problem, such
as determining the locations of emergency centers [Tore-
gas et al., 1971] and fire stations [Tansel et al., 1983;
Badri et al., 1998]. Regarding the supply-chain management,
production plant location and warehouse distribution can be
modeled as the p-center problem [Amiri, 2006]. In telecom-

∗Corresponding author

munication, the p-center problem can formulate the reliable
hub network design problem [Tran et al., 2016].

As a challenging NP-hard problem [Kariv and Hakimi,
1979], the p-center problem has attracted much attention from
academic society during last decades. The solution methods
of the p-center problem can be mainly categorized into exact
algorithms and metaheuristic algorithms. Regarding the ex-
act algorithms, Minieka [1970] converted the p-center prob-
lem into a series of set covering problems. Based on Minieka
[1970], Daskin [2002] solved the p-center problem using La-
grangian relaxation. Ilhan et al. [2002] proposed an algo-
rithm which finds the lower bound by optimizing the linear
relaxation of the original problem, then it improves this lower
bound by proving the infeasibility of a series of decision prob-
lems via integer programming. Elloumi et al. [2004] inde-
pendently designed a similar approach as Ilhan et al. [2002]
and obtained better results. Calik and Tansel [2013] proposed
an integer programming formulation and a decomposition-
based exact algorithm for tackling the p-center problem.

Apart from the exact methods, various metaheuristic al-
gorithms have been proposed for solving the p-center prob-
lem. Mladenović et al. [2003] presented a tabu search and
a variable neighborhood search. Caruso et al. [2003] pro-
posed a hybrid algorithm which efficiently solves some small-
scale p-center instances. Pullan [2008] presented a memetic
algorithm which combines a local search procedure with a
population-based metaheuristic algorithm. Davidović et al.
[2011] solved the p-center problem by bee colony optimiza-
tion. Ferone et al. [2017] proposed a GRASP-based algo-
rithm and Yin et al. [2017] combined path-relinking with
GRASP to tackle the p-center problem.

This paper presents a vertex weighting-based tabu search
(VWTS) algorithm which incorporates a vertex weighting
technique and a tabu search procedure for solving the p-center
problem. Distinguished from the previous metaheuristics
which directly tackle the original problem, VWTS converts
the p-center problem into a series of set covering problems.
Specifically, for each possible covering radius r, it checks if
each client can be served by any center within the covering
radius r. Our contributions can be summarized as follows:

1) We transform the p-center problem to a series of deci-
sion subproblems, each of which is further converted to
a new optimization problem to reduce the complexity.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1481

2) By combining a vertex weighting technique with a tabu
search procedure, and using incremental neighborhood
evaluation, VWTS reaches better balance between ex-
ploitation and exploration despite its simplicity.

3) Tested on two sets of totally 138 most commonly used
instances of the p-center problem, the proposed VWTS
algorithm improves the best known results on 14 in-
stances and matches the records on the remaining ones.
Moreover, our computational time is much shorter than
that of the state-of-the-art algorithms in the literature.

4) We conduct extensive experiments to justify the merits
of the key components of our algorithm, which are the
vertex weighting technique, the tabu search strategy, and
the incremental neighborhood evaluation, respectively.

2 Problem Description and Transformation
The p-center problem is defined on an undirected complete
graph G = (V,C,E), where V ∪ C is the vertex set and E
is the edge set. Each vertex vi ∈ V corresponds to one of
n clients to be served by one of the p centers chosen from
the set of m candidate centers C. For each edge connecting
vertices i and j, dij gives its length. The solution vector can
be defined as (x, y, r), where variable xj = 1 iff a candidate
center j ∈ C is opened, variable yij = 1 iff client i ∈ V
is served by candidate center j ∈ C, and variable r ∈ R+

is the upper bound of the covering radius. Then, the classi-
cal mixed-integer programming (MIP) model for the p-center
problem can be formulated to the following model (PC).

(PC) min r, (1)

s.t.
∑
j∈C

xj ≤ p, (2)

∑
j∈C

yij = 1, ∀i ∈ V, (3)

yij ≤ xj , ∀i ∈ V, ∀j ∈ C, (4)∑
j∈C

dijyij ≤ r, ∀i ∈ V, (5)

xj , yij ∈ {0, 1}, r ∈ R+, ∀i ∈ V, ∀j ∈ C. (6)

In model (PC), objective (1) aims to minimize the cover-
ing radius. Constraints (2)–(5) requires that there is at most
p opened centers, each client must be served by exactly one
center, only the opened centers can serve the clients, and the
covering radius r is not shorter than any serving arc from each
client to its assigned center, respectively. It is obvious that the
optimal covering radius must be the same as the length of a
certain edge dij . Hence, let Γ = {r1, r2, ..., rk} be an ordered
list of distinct edge lengths where r1 < r2 < ... < rk, the p-
center problem can be considered as seeking for the smallest
rank q such that model (PC) is still feasible when r ≥ rq ,
while it becomes infeasible if constraint r ≤ rq−1 is added.

When the optimal edge length rank q of an instance is
given, the p-center problem is equivalent to the set covering
problem [Chvatal, 1979]. Specifically, we use a vertex set
Vq
j = {i ∈ V |dij ≤ rq} to denote the set of clients that candi-

date center j ∈ C can serve within covering radius rq . Thus,

we can obtain a set covering instance Vq = {Vq
1 ,V

q
2 , ...,Vq

m}.
If there exists p sets out of Vq whose union contains all ver-
tices, we can claim that the corresponding p centers are able
to serve all clients within the covering radius rq . Therefore,
the set covering problem defined by Eqs. (7)–(10) in the fol-
lowing model (SCq) is equivalent to model (PC) when the
optimal edge length rank q is specified, where ui is a binary
variable which is 1 if client i is not covered by any center, and
xj is the same decision variable in model (PC).

(SCq) min
∑
i∈V

ui, (7)

s.t.
∑

j∈C,dij≤rq

xj ≥ 1− ui, ∀i ∈ V, (8)

∑
j∈C

xj = p, (9)

xj , ui ∈ {0, 1}, ∀i ∈ V, ∀j ∈ C. (10)

Model (SCq) is slightly different from the standard set
covering model or the MIP model presented by Elloumi et al.
[2004]. Instead of minimizing the number of chosen sets, it
minimizes the number of uncovered clients by exactly open-
ing p centers as shown in Eq. (7). Constraints (8) ensure that
for each client there is at least one center within the covering
radius r. Constraint (9) limits the number of opened centers.

Unfortunately, we are usually lack of the priori knowledge
about the optimal covering radius, so we need to iterate over
the distinct edge length list Γ to examine each possible radius.
In fact, by utilizing the bounds of the original problem, the
number of subproblems can be greatly reduced.

3 Vertex Weighting-Based Tabu Search
In order to tackle the p-center problem, the proposed VWTS
algorithm combines the tabu search strategy and the vertex
weighting technique to solve a series of subproblems. Start-
ing from an upper bound rq0 obtained by executing solvers
for model (PC) such as the PBS algorithm [Pullan, 2008] un-
der limited time, VWTS solves models (SCq0−1), (SCq0−2),
..., (SC1) in turn until it fails to find any feasible solution for
model (SCq∗−1) within the given time limit. Then, rq∗ is the
best covering radius found. Therefore, our focus will be on
the solution method for model (SCq) with a given radius rq .

The main framework of the proposed VWTS algorithm is
presented in Algorithm 1. It generates an initial solution X
by a greedy algorithm (line 1), and iteratively improves the
incumbent solution by a tabu search procedure (lines 4–14).
At each iteration of the VWTS algorithm, it first evaluates
the neighborhood of the current solution and records the best
neighborhood move while respecting their tabu states (line
5). Then, it makes the best move and replaces the current
solution with the resulting neighboring solution (line 6). If
the current solutionX improves the best solution found so far,
thenX∗ is updated withX (lines 7–8). Otherwise, we need to
check whether the current solution falls into a local optimum,
that is, the best move returned by function FindPair() cannot
reduce the number of uncovered clients (line 9). If stagnation
occurs, the weight of each uncovered client is adjusted (line

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1482

Algorithm 1 The main framework of the VWTS algorithm

Input: A graph G, a center number p, a covering radius rq
Output: The best solution found so far X∗

1: A set of p centers X ← Init(G, p, rq) /* (Section 3.1) */
2: X∗ ← X , X ′ ← X , tabu list TL← ∅, iter ← 1
3: Vertex weights wi ← 1, ∀i ∈ V /* (Section 3.2) */
4: while termination condition is not met do
5: (i, j)← FindPair(X ′, TL, iter) /* (Algorithm 2) */
6: MakeMove(i, j) /* (Algorithm 4) */
7: if |U(X)| < |U(X∗)| then /* U(X) is the set of */
8: X∗ ← X /* clients uncovered by X */
9: else if |U(X)| ≥ |U(X ′)| then

10: wv ← wv + 1, ∀v ∈ U(X) /* (Section 3.2) */
11: end if /* more uncovered clients than last solution */
12: TL← {i, j} /* update tabu list (Section 3.4) */
13: X ′ ← X , iter ← iter + 1
14: end while

10). Finally, when the specified termination condition is met,
the algorithm terminates and returns the best solution X∗.

3.1 Initialization
The VWTS algorithm employs a constructive heuristic for
generating a set of centers X as the initial solution. Let Vj
denote the set of clients that candidate center j can serve
within the current covering radius. Ci gives the set of can-
didate centers which are able to serve client i, that is, Ci =
{j ∈ C|i ∈ Vj}. U(X) = V \

⋃
j∈X Vj represents the set

of clients that are not served in solution X . The constructive
heuristic opens centers one by one under a maximal coverage
principle. Precisely, it iteratively selects a candidate center
j = arg maxj∈C\X |Vj ∩ U(X)| which covers most uncov-
ered clients, and inserts it into the current solutionX . If there
are multiple candidate centers covering the same number of
uncovered clients, ties are broken randomly. The time com-
plexity of the construction is O(np).

3.2 Vertex Weighting Technique
The vertex weighting technique helps the search to escape
from the local optima by altering the objective function. It
can be regarded as a variant of guided local search [Voudouris
and Tsang, 2003] and has been successfully applied to many
problems, such as unicost set covering problem [Gao et al.,
2015], minimum vertex cover problem [Cai et al., 2011] and
satisfiability problem [Luo et al., 2012]. In the p-center prob-
lem, we adapt objective (7) as Eq. (11) presents.

(SCw
q) min f(X) =

∑
∀i∈V

wiui, (11)

s.t. (8)–(10).

Therefore, the VWTS algorithm actually works on model
(SCw

q). Note that it is a dynamic model where wi varies as
the search proceeds. If the VWTS algorithm keeps failing to
cover a client, it implies that this vertex is hard to cover and
we should treat it with higher priority. Specifically, when the
tabu search is trapped in local optimal solutionX , the VWTS
algorithm increases the weight wi of each uncovered client

i ∈ U(X) by one unit (Algorithm 1, lines 9–11). Never-
theless, the objective value of an optimal solution is always
zero regardless of the configuration of the weights. This pro-
cess changes the landscape of the solution space such that X
is no longer a local optimum, and the search will be able to
continue to explore other search areas. The more frequent
a client appears in U(X) when encountering stagnations, the
greater its weight will be. On the one hand, the vertex weight-
ing technique is able to prevent vertices from being repeatedly
uncovered and diversify the search in an adaptive manner. On
the other hand, it modifies the solution space in a smooth way,
which can guide the search to promising search regions.

3.3 Neighborhood Structure and Evaluation
In order to improve the initial solution under model (SCw

q),
VWTS employs a swap-based neighborhood structure in-
spired by most local search-based metaheuristics for the p-
center problem [Pullan, 2008], while the neighborhood eval-
uation is significantly different due to the reformulation pre-
sented in Section 2 and the following acceleration strategies.
Denoted by Swap(i, j), a swap move produces a neighbor-
ing solution X ⊕ Swap(i, j) = X ∪ {i} \ {j}, by opening a
candidate i ∈ C \X , and closing an opened center j ∈ X .

The neighborhood evaluation is the most time consuming
procedure in a trajectory-based metaheuristic algorithm. For
a typical tabu search algorithm which adopts the best im-
provement policy, it evaluates all feasible moves at each itera-
tion, and performs one of the best neighborhood moves which
improves the objective value as much as possible. Since there
are O(p(n − p)) swap moves, the size of the neighborhood
could be huge on some large instances. Therefore, we use a
neighborhood sampling strategy and an incremental evalua-
tion technique to accelerate the evaluation.

On the one hand, the objective value can only be improved
by covering some uncovered clients, so the VWTS algorithm
will only evaluate a swap move Swap(i, j) if i covers some
uncovered vertices in U(X). Since each client must be even-
tually covered, the VWTS algorithm randomly picks a ver-
tex k ∈ U(X), and only evaluates neighborhood moves
Swap(i, j) where i ∈ Ck and j ∈ X . Apart from the reduced
time consumption for the neighborhood evaluation, the diver-
sification of the search is improved as a side effect, reaching
a better balance between intensification and diversification.

On the other hand, we try to accelerate the neighborhood
evaluation by reusing some intermediate results for calcu-
lating the objective values. Instead of naively summing the
weights of the covered clients according to objective (11),
VWTS incrementally evaluates all neighborhood moves by
storing and maintaining δj , the objective value increase (de-
crease) by closing (opening) center j. For each center j ∈ X ,
δj =

∑
i∈(Vj∩U(X\{j})) wi is the sum of the weights of the

vertices which can only be served by center j. For each can-
didate center j /∈ X , δj =

∑
i∈(Vj∩U(X)) wi is the sum of

the weights of all uncovered clients in Vj . Then, the eval-
uation for each neighborhood move can be implemented in
O(1) time complexity, at the cost of updating the affected δ
values every time after opening or closing a center. Specif-
ically, it calculates the objective value for opening center i
by f(X ∪ {i}) = f(X) − δi. Then, we need to update the

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1483

Algorithm 2 Find the best swap pair

1: function FINDPAIR(X,TL, iter)
2: The set of best swap moves M ← ∅
3: The best objective value obj ← +∞
4: v ← a randomly picked uncovered vertex in U(X)
5: δ′j ← δj , ∀j ∈ C /* backup before trial moves */
6: for all i ∈ Cv do /* Cv: candidates covering v */
7: TryToOpenCenter(i) /* (Algorithm 3) */
8: for all j ∈ X do /* evaluate closing center j */
9: if {i, j} ∩ TL = ∅ then /* not tabu move */

10: if f(X ⊕ Swap(i, j)) < obj then
11: obj ← f(X ⊕ Swap(i, j))
12: M ← {Swap(i, j)}
13: else if f(X ⊕ Swap(i, j)) = obj then
14: M ←M ∪ {Swap(i, j)}
15: end if
16: end if
17: end for
18: δj ← δ′j , ∀j ∈ C /* restore after trial moves */
19: end for /* v ∈ U(X)⇔ Cv ∩X = ∅ */
20: return a randomly picked move in M
21: end function

Algorithm 3 Open a center virtually

1: function TRYTOOPENCENTER(i)
2: for all v ∈ Vi do /* |X ∩ Cv|: number of centers */
3: if |X ∩ Cv| = 1 then /* covering v in X */
4: /* cancel penalty for making v uncovered */
5: δl ← δl − wv, for l ∈ X ∩ Cv /* O(1) */
6: end if /* l was the only center covering v but */
7: end for /* it will not be the only one if i opens so */
8: end function /* closing l does not make v uncovered */

δ values affected by opening center i which eliminates the
penalties for closing some centers due to the overlapped cov-
erage. After that, we can evaluate the neighboring solutions
by f(X ⊕ Swap(i, j)) = f(X ∪ {i}) + δj . As tabu search
procedure evaluates a large number of moves but only makes
a single move at each iteration, it is worthy of maintaining
and querying the cache rather than computing the objective
function from scratch for every swap move.

Algorithm 2 describes the neighborhood evaluation proce-
dure. It randomly selects a client k ∈ U(X) (line 4) and tries
to open each candidate center which covers vertex k (lines 6–
7). The sub-routine TryToOpenCenter(i) keeps each δj up-
to-date to accelerate the calculation of the objective function
f(X ⊕ Swap(i, j)). For each non-tabu neighboring solution,
if its objective value is smaller than obj, the corresponding
neighborhood move is saved as the best move (lines 9–16).
When all trial moves regarding opening candidate center i
are evaluated, we need to restore the δ values (line 18).

Apparently, covering a client v which has already been
covered (|X ∩ Cv| ≥ 1) will not improve the objective value,
and closing the center which serves a client v will not worsen
the objective value if there are multiple centers which can
cover vertex v (|X ∩ Cv| ≥ 2). Therefore, as presented in Al-

Algorithm 4 Make a swap move

1: function MAKEMOVE(i, j)
2: for all v ∈ Vi do /* consequences of opening i */
3: if |X ∩ Cv| = 1 then /* (Algorithm 3) */
4: δl ← δl − wv, for l ∈ X ∩ Cv
5: else if |X ∩ Cv| = 0 then
6: δl ← δl − wv, ∀l ∈ Cv \ {i}
7: end if /* cancel reward for covering v */
8: end for
9: X ← X ∪ {i} \ {j}

10: for all v ∈ Vj do /* consequences of closing j */
11: if |X ∩ Cv| = 0 then /* add reward for */
12: δl ← δl + wv, ∀l ∈ Cv \ {j} /* covering v */
13: else if |X ∩ Cv| = 1 then
14: δl ← δl + wv, for l ∈ X ∩ Cv
15: end if /* add penalty for uncovering v */
16: end for
17: end function

gorithm 3, if there is exactly one center l which covers client
v (|X ∩ Cv| = 1) before opening center i, then the δ value
for closing center l which used to make client v uncovered
will decrease by wv (lines 4–7), because closing center l will
not make client v uncovered once center i is opened. We are
only interested in δj(∀j ∈ X) for closing a center, since lines
8–17 in Algorithm 2 only concern closing another center. As
a result, the worst-case time complexity of Algorithm 2 and
Algorithm 3 are O(n2) and O(n), respectively.

When the best swap move is performed (Algorithm 1, line
6), we need to update the affected data structures by calling
Algorithm 4. In addition to updating the δ values as Algo-
rithm 3 (lines 3–4), if there is no center covering client v
(|X ∩ Cv| = 0) before opening center i, then the δ value for
opening each candidate center l to cover client v is decreased
by wv (lines 5–7), because opening center l to cover the al-
ready covered client v in the future will no longer improve
the objective value by wv . Then, it updates the set of opened
centers (line 9). The influences on δ values for closing center
j are taken into account in a similar manner (lines 10–16).

3.4 Tabu Search
Tabu search usually incorporates a recency-based tabu list
to prohibit revisiting recently visited solutions. The tabu
strategy prevents closing newly opened centers or reopening
newly closed ones immediately. We fix the parameter of the
tabu tenure in the tabu strategy to one iteration, so the pro-
posed algorithm keeps simple and parameter-free. Specifi-
cally, if we open (close) a center at the current iteration iter,
it is forbidden to close (open) it again at the the next itera-
tion. Thus, Swap(i, j) at iteration iter introduces two vertices
{i, j} in tabu list TL (Algorithm 1, line 12) and neither i nor
j can be involved at iteration iter + 1 (Algorithm 2, line 9).

4 Experimental Results and Comparisons
In order to evaluate the effectiveness of the proposed VWTS
algorithm, we conduct extensive experiments on the well-
known datasets, and compare VWTS with the state-of-the-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1484

art algorithms including two exact algorithms (ELP [Elloumi
et al., 2004] and DBR2 [Calik and Tansel, 2013]) and three
metaheuristic algorithms (PBS [Pullan, 2008], GRASP+PS
[Ferone et al., 2017], and GRASP/PR [Yin et al., 2017]).

4.1 Experimental Protocol
Our proposed VWTS algorithm is programmed in C++ and
compiled with Visual Studio 2017. All experiments are car-
ried out on Windows Server 2012 x64 with Intel Xeon E5-
2609v2 2.50 GHz CPU. We run a reimplemented PBS algo-
rithm [Pullan, 2008] under a 5-millisecond time limit to ob-
tain a good initial upper bound of the covering radius rq0 for
each instance. We performed 20 independent runs on each
instance, and the cutoff time for each subproblem induced by
each covering radius is 6 minutes. Since the programs of the
reference algorithms are not available, we report their com-
putational time in the corresponding papers and normalize
the run time according to CPU frequency for a fair compar-
ison. The run time for ELP is divided by 6.25 for it runs on
a 400 MHz Pentium II CPU. The remaining algorithms are
tested on faster (PBS, GRASP+PS, GRASP/PR) or unknown
(DBR2) CPUs, so we report their computational time as is.

There are mainly two sets of benchmark instances for the
p-center problem. The first set consists of 40 small instances
(pmed) from OR-Library [Beasley, 1990]. The second set
contains 98 instances from TSPLIB which are based on pla-
nar graphs and derived from real-world applications [Reinelt,
1991]. The TSPLIB dataset can be further divided into 44
small instances (sTSP) with less than 1000 vertices, and 54
large ones (u1060, rl1323, u1817, pcb3038). A client is also
a candidate center (V = C) in these instances. We compute
the all-pair shortest paths by Floyd algorithm [Floyd, 1962]
for the pmed instances, and round the Euclidean distances to
the nearest hundredths for the TSPLIB instances, as Pullan
[2008] did. Note that algorithm ELP and DBR2 adopt integer
distances which are too rough to figure out the optimal q∗.

4.2 Computational Results
In this section, we provide comprehensive investigations on
the performance of our VWTS algorithm and report the de-
tailed results in Tables 1 and 2. They follow the same con-
vention described below. Columns Dataset and Instance give
the names of datasets and instances, respectively. Columns
n and p indicate the numbers of vertices and centers, respec-
tively. Column Count presents the number of instances in
the dataset. Column CPU gives the normalized average CPU
time in seconds. For VWTS, it includes the total time for
computing rq0 and sequentially solving all subproblems from
(SCq0) to (SCq∗). Column CPU-q∗ reports the run time in
seconds for VWTS to solve the subproblem induced by the
best known covering radius rq∗ , which shows the limit of
VWTS when parallel computing is available. Column fbest
presents the best objective values obtained by the correspond-
ing algorithms. Column #best shows the number of instances
where the corresponding algorithms match the best known
results. The #better, #equal, and #worse are the number of in-
stances where VWTS obtains better, equal, and worse results
comparing to the corresponding algorithms, respectively.

Table 1 compares the overall results on each dataset ob-
tained by ELP, DBR2, PBS, GRASP/PR, and our VWTS. We
can observe that VWTS obtains the best known results for
all the instances, while no reference algorithm can obtain this
overall outcome. Moreover, the average computational time
of VWTS on each dataset is over 4 times shorter than the best
algorithms in the literature. If parallel computing is available,
the performance gain can be over 30 times. The time differ-
ence is so big that the comparison is not biased by the nor-
malization. In addition, VWTS is very stable since it always
obtains the reported results in all 20 independent runs.

Table 2 compares the experimental results produced by
ELP, DBR2, PBS, GRASP+PS, GRASP/PR, and our VWTS
on 30 largest and most challenging instances. Note that the
real upper bounds for dataset pcb3038 have not been updated
for decades (although DBR2 improved some integer bounds).
From Table 2 we can observe that, the proposed VWTS algo-
rithm improves the previous best known results obtained by
GRASP/PR and PBS on rl1323 with p = 100, u1817 with
p = 80, 130, 150, and pcb3038 with p ≥ 50. Apart from
the improved solution quality, VWTS outperforms all refer-
ence algorithms on u1817 and pcb3038 datasets in terms of
the computational time. Regarding the run time for the sub-
problem corresponding to the optimal or best known covering
radius, VWTS is able to obtain the new best known results
on 23 out of 30 instances within 3 seconds. Furthermore,
if VWTS stops at the previous best covering radius, it only
takes 3 seconds on 28 instances. In sum, these statistics show
that the our VWTS is highly effective, efficient, robust, and
concurrency-friendly for solving the p-center problem.

4.3 Importance of VWTS Ingredients
In order to evaluate the merits of the vertex weighting tech-
nique, the tabu search strategy, and the incremental neighbor-
hood evaluation, we conducted experiments on four largest
instances (pcb3038, p = 350, 400, 450, 500) to compare
VWTS with its simplified versions obtained by disabling the
tabu strategy (VW), deactivating the vertex weighting tech-
nique (TS), and using the naive neighborhood evaluation in-
stead of the incremental one (VWTS′), respectively.

Figure 1 depicts the evolution of the uncovered vertex num-
bers as the search proceeds by VWTS, VW, TS, and VWTS′.
Each point (x, y) means that there are 10y − 1 clients which
are not served by any center at 10x microsecond. We can
observe that, although TS can obtain better solutions than
VWTS at first milliseconds, VWTS and VW overtake after
0.1 seconds. The reason for this phenomena might be that, the
tabu search pays too much attention on prohibiting a candi-
date center from being centers, instead of directly preventing
a client from being uncovered. In extreme conditions, some
hard-to-serve vertices will never get a chance to be served at
all. However, the tabu strategy accelerates the convergence
of VWTS. According to Figure 1, VWTS is over 100.2 = 1.5
times faster than VW for finding a feasible covering. More-
over, when the incremental evaluation is disabled, VWTS′ is
100 times slower than the complete algorithm. These obser-
vations confirm that the vertex weighting technique, the tabu
strategy, and the incremental evaluation are all essential for
VWTS in terms of effectiveness and efficiency.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1485

Dataset Count
ELP DBR2 PBS GRASP/PR VWTS

#best #better CPU #best #better CPU #best #better CPU #best #better CPU #best CPU-q∗ CPU

pmed 40 40 0 0.75 40 0 0.65 40 0 2.91 40 0 0.12 40 <0.01 <0.01
sTSP 44 - - - - - - 42 2 12.38 44 0 1.02 44 <0.01 <0.01
u1060 15 15 0 4.54 - - - 12 3 151.13 15 0 90.87 15 0.03 0.47
rl1323 10 10 0 10.35 - - - 9 1 3464.29 9 1 1898.46 10 0.19 1.80
u1817 15 8 7 38.02 15 0 675.69 7 8 2792.08 12 3 1286.03 15 0.86 2.35
pcb3038 14 - - - 5 5 33066.00 4 10 1000.18 4 10 3564.54 14 33.36 212.91

Table 1: Average computational results on all six datasets. Numbers in bold (italic) indicate the improved (matched) best known results.

Instance n p
ELP DBR2 GRASP+PS PBS GRASP/PR VWTS

fbest CPU fbest CPU fbest fbest CPU fbest CPU fbest CPU-q∗ CPU

rl1323 1323 100 787 4.16 - - 886.85 789.70 1,840.50 789.70 2010.67 787.10* 0.31 1.26
u1817 1817 10 458 97.76 458 22.11 466.96 457.91 5316.60 457.91 604.53 457.91* 1.85 1.78
u1817 1817 20 310 105.60 309 278.49 330.20 309.01 10243.00 309.01 4068.06 309.01* 2.92 8.56
u1817 1817 30 250 56.80 241 344.59 265.19 240.99 1605.50 240.99 1239.97 240.99* 1.52 5.23
u1817 1817 40 210 39.52 209 1221.86 232.25 209.46 193.70 209.45 308.29 209.45* 0.91 1.41
u1817 1817 50 187 38.72 185 330.09 204.79 184.91 1128.90 184.91 471.94 184.91* 0.08 1.20
u1817 1817 60 163 28.32 163 17.52 184.91 162.65 837.30 162.64 469.43 162.64* 0.07 0.93
u1817 1817 70 148 26.56 148 6.04 170.39 148.11 191.80 148.11 19.66 148.11* 0.05 0.45
u1817 1817 80 137 24.00 137 35.12 154.50 136.80 127.50 136.80 12.42 136.77* 3.00 1.66
u1817 1817 90 130 25.76 129(?) 7519.04 148.11 129.54 2963.50 129.51 3859.05 129.51* 0.55 0.59
u1817 1817 100 127 25.44 127 10.22 136.79 127.01 146.40 126.99 2.35 126.99* 0.02 0.27
u1817 1817 110 109 19.04 110 5.32 - 109.25 13772.40 109.25 6954.89 109.25* 0.27 1.70
u1817 1817 120 108 20.96 107(?) 3.99 - 107.78 80.10 107.76 5.25 107.76* 0.02 0.25
u1817 1817 130 108 19.36 105 335.03 - 107.75 11.20 107.75 7.04 104.73* 1.20 9.17
u1817 1817 140 105 19.36 102 4.62 - 101.61 4949.30 101.60 30.95 101.60* 0.39 0.60
u1817 1817 150 94 23.04 92 6.61 - 101.60 314.00 92.44 1236.55 91.60* 0.07 1.41
pcb3038 3038 10 - - 729 176.23 - 728.54 5415.40 728.54 240.56 728.54 0.53 23.37
pcb3038 3038 20 - - 493 22740.76 - 493.04 972.10 493.04 1051.99 493.04 1.74 38.28
pcb3038 3038 30 - - 397 76923.67 - 393.50 438.60 393.50 644.34 393.50 1.23 69.22
pcb3038 3038 40 - - 337 72364.56 - 336.42 763.00 336.42 420.28 336.42 79.81 264.98
pcb3038 3038 50 - - 300 91029.77 534.48 298.20 731.60 298.10 4686.77 298.04 78.34 307.51
pcb3038 3038 100 - - 209 27292.39 399.49 206.63 565.80 207.06 6678.44 206.60 97.85 683.89
pcb3038 3038 150 - - - - 331.62 164.77 427.00 165.00 5653.32 164.55 88.55 705.74
pcb3038 3038 200 - - 141 33929.91 301.01 140.90 899.40 140.62 5021.13 140.09 59.09 360.98
pcb3038 3038 250 - - - - 292.48 122.78 723.70 122.78 1985.10 122.25 24.37 205.55
pcb3038 3038 300 - - 115 6185.96 261.28 115.25 537.40 115.73 3671.32 115.00 29.73 133.26
pcb3038 3038 350 - - - - 258.82 104.81 805.90 104.81 3926.83 104.68 1.64 49.33
pcb3038 3038 400 - - 97 11.48 249.78 97.51 620.60 97.80 6956.46 96.88 2.89 55.58
pcb3038 3038 450 - - - - 214.97 88.96 666.20 89.56 6161.75 88.55 0.51 49.46
pcb3038 3038 500 - - 85 5.23 209.35 85.00 435.80 85.09 3015.45 84.58 0.76 33.60

#better/#equal/#worse 7/9/0 6/17/0 21/0/0 20/10/0 14/16/0

Table 2: Computational results on the most challenging instances. Smaller fbest is better. “*” means the optimal objective value proven by
model (SCq). The results marked with “(?)” are incorrect according to the optimality proof. Other notations are the same as Table 1.

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8

B
es

t f
(X

)v
al

ue
(1

0y
-1

)

Time on pcb3038p400 (10xμs)

VWTS

VW

TS

VWTS'
0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8

B
es

t f
(X

)v
al

ue
(1

0y
-1

)

Time on pcb3038p450 (10xμs)

VWTS

VW

TS

VWTS'
0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8

B
es

t f
(X

)v
al

ue
(1

0y
-1

)

Time on pcb3038p500 (10xμs)

VWTS

VW

TS

VWTS'
0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6 7 8

B
es

t f
(X

) v
al

ue
(1

0y
-1

)

Time on pcb3038p350 (10xμs)

VWTS

VW

TS

VWTS'

Figure 1: Evolution of the uncovered vertex number by VWTS, VW, TS, and VWTS′ on four largest instances.

5 Conclusion
This paper presented a vertex weighting-based tabu search al-
gorithm to solve the p-center problem. We decompose the p-
center problem into a series of set covering subproblems, and
solve them by combining the vertex weighting technique and
the tabu search strategy. Tested on 138 widely used datasets,
VWTS improves the best known results on 14 instances and

matches the records in the literature for all remaining ones
within less run time. Thus, it would be appealing to inves-
tigate the combination of the proposed strategies for solving
other optimization problems in the future.

Acknowledgments
Research partially supported by Alkaid lab of Huawei Cloud.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1486

References
[Amiri, 2006] Ali Amiri. Designing a distribution network in

a supply chain system: Formulation and efficient solution
procedure. European Journal of Operational Research,
171(2):567–576, 2006.

[Badri et al., 1998] Masood A Badri, Amr K Mortagy, and
Colonel Ali Alsayed. A multi-objective model for locating
fire stations. European Journal of Operational Research,
110(2):243–260, 1998.

[Beasley, 1990] John E Beasley. OR-library: distributing test
problems by electronic mail. Journal of the Operational
Research Society, 41(11):1069–1072, 1990.

[Cai et al., 2011] Shaowei Cai, Kaile Su, and Abdul Sat-
tar. Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artificial
Intelligence, 175(9-10):1672–1696, 2011.

[Calik and Tansel, 2013] Hatice Calik and Barbaros C
Tansel. Double bound method for solving the p-center
location problem. Computers & Operations Research,
40(12):2991–2999, 2013.

[Caruso et al., 2003] C Caruso, A Colorni, and L Aloi. Dom-
inant, an algorithm for the p-center problem. European
Journal of Operational Research, 149(1):53–64, 2003.

[Chvatal, 1979] Vasek Chvatal. A greedy heuristic for the
set-covering problem. Mathematics of Operations Re-
search, 4(3):233–235, 1979.

[Daskin, 2002] Mark S Daskin. A new approach to solving
the vertex p-center problem to optimality: Algorithm and
computational results. Communications of the Operations
Research Society of Japan, 45:428–436, 2002.

[Davidović et al., 2011] Tatjana Davidović, Dušan Ramljak,
Milica Šelmić, and Dušan Teodorović. Bee colony opti-
mization for the p-center problem. Computers & Opera-
tions Research, 38(10):1367–1376, 2011.

[Elloumi et al., 2004] Sourour Elloumi, Martine Labbé, and
Yves Pochet. A new formulation and resolution method
for the p-center problem. INFORMS Journal on Comput-
ing, 16(1):84–94, 2004.

[Ferone et al., 2017] Daniele Ferone, Paola Festa, Antonio
Napoletano, and Mauricio GC Resende. A new local
search for the p-center problem based on the critical ver-
tex concept. In International Conference on Learning and
Intelligent Optimization, pages 79–92. Springer, 2017.

[Floyd, 1962] Robert W Floyd. Algorithm 97: shortest path.
Communications of the ACM, 5(6):345, 1962.

[Gao et al., 2015] Chao Gao, Xin Yao, Thomas Weise, and
Jinlong Li. An efficient local search heuristic with row
weighting for the unicost set covering problem. European
Journal of Operational Research, 246(3):750–761, 2015.

[Hakimi, 1964] S Louis Hakimi. Optimum locations of
switching centers and the absolute centers and medians of
a graph. Operations Research, 12(3):450–459, 1964.

[Ilhan et al., 2002] T Ilhan, F Ozsoy, and M Pinar. An effi-
cient exact algorithm for the vertex p-center problem and
computational experiments for different set covering sub-
problems. Technical report, Bilkent University, Depart-
ment of Industrial Engineering, 2002.

[Kariv and Hakimi, 1979] Oded Kariv and S Louis Hakimi.
An algorithmic approach to network location problems. I:
The p-centers. SIAM Journal on Applied Mathematics,
37(3):513–538, 1979.

[Luo et al., 2012] Chuan Luo, Kaile Su, and Shaowei Cai.
Improving local search for random 3-SAT using quantita-
tive configuration checking. In Proceedings of the 20th Eu-
ropean Conference on Artificial Intelligence, pages 570–
575. IOS Press, 2012.

[Minieka, 1970] Edward Minieka. The m-center problem.
SIAM Review, 12(1):138–139, 1970.

[Mladenović et al., 2003] Nenad Mladenović, Martine
Labbé, and Pierre Hansen. Solving the p-center problem
with tabu search and variable neighborhood search.
Networks: An International Journal, 42(1):48–64, 2003.

[Pullan, 2008] Wayne Pullan. A memetic genetic algorithm
for the vertex p-center problem. Evolutionary Computa-
tion, 16(3):417–436, 2008.

[Reinelt, 1991] Gerhard Reinelt. TSPLIB–a traveling sales-
man problem library. ORSA Journal on Computing,
3(4):376–384, 1991.

[Tansel et al., 1983] B. C. Tansel, R. L. Francis, and T. J.
Lowe. Location on networks: A survey. Management Sci-
ence, 29:482–511, 1983.

[Toregas et al., 1971] Constantine Toregas, Ralph Swain,
Charles ReVelle, and Lawrence Bergman. The location
of emergency service facilities. Operations Research,
19(6):1363–1373, 1971.

[Tran et al., 2016] Trung Hieu Tran, Jesse R O’ Hanley, and
M Paola Scaparra. Reliable hub network design: Formu-
lation and solution techniques. Transportation Science,
51(1):358–375, 2016.

[Voudouris and Tsang, 2003] Christos Voudouris and Ed-
ward P. K.” Tsang. Guided Local Search, pages 185–218.
Springer US, Boston, MA, 2003.

[Yin et al., 2017] Ai-Hua Yin, Tao-Qing Zhou, Jun-Wen
Ding, Qing-Jie Zhao, and Zhi-Peng Lv. Greedy random-
ized adaptive search procedure with path-relinking for the
vertex p-center problem. Journal of Computer Science and
Technology, 32(6):1319–1334, 2017.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1487

