
A Two-Stage Matheuristic Algorithm for Classical Inventory Routing Problem

Zhouxing Su , Shihao Huang , Chungen Li and Zhipeng Lü∗

SMART, School of Computer Science and Technology, Huazhong University of Science and Technology,
China

zhipeng.lv@hust.edu.cn

Abstract

The inventory routing problem (IRP), which is NP-
hard, tackles the combination of inventory man-
agement and transportation optimization in supply
chains. It seeks a minimum-cost schedule which
utilizes a single vehicle to perform deliveries in
multiple periods, so that no customer runs out of
stock. Specifically, the solution of IRP can be rep-
resented as how many products should be deliv-
ered to which customer during each period, as well
as the route in each period. We propose a two-
stage matheuristic (TSMH) algorithm to solve the
IRP. The first stage optimizes the overall sched-
ule and generates an initial solution by a relax-and-
repair method. The second stage employs an iter-
ated tabu search procedure to achieve a fine-grained
optimization to the current solution. Tested on 220
most commonly used benchmark instances, TSMH
obtains advantages comparing to the state-of-the-
art algorithms. The experimental results show that
the proposed algorithm can obtain not only the op-
timal solutions for most small instances, but also
better upper bounds for 40 out of 60 large instances.
These results demonstrate that the TSMH algo-
rithm is effective and efficient in solving the IRP.
In addition, the comparative experiments justify the
importance of two optimization stages of TSMH.

1 Introduction
The rise of e-business brings great opportunities for the sup-
ply chain industry, along with challenges due to the grow-
ing demands for higher throughput and lower latency. Fortu-
nately, the developments of Internet of Things and statistical
learning makes it possible to collect sufficient data from ev-
ery link in the value chain and provide constructive analysis
and predictions. By utilizing these data, the related compa-
nies are able to reduce their operation expenses, increases the
profits, improve the efficiency, and bring better user experi-
ences. Thus, more and more companies start to pay attentions
to systematic optimization for the whole supply chain.

∗Corresponding author

Traditionally, suppliers or retailers manage their own ware-
houses and the inventory replenishment by themselves. They
work out specific orders according to their production and
consumption, and submit them to the logistics companies
and the latter ones just do the deliveries. Due to the uncer-
tainty of the call-in orders, it is hard for the logistics com-
panies to make reasonable plans, which usually affects the
operation efficiency and introduces unnecessary costs. In or-
der to tackle the drawbacks brought by asymmetric informa-
tion and achieve global optimization, vendor managed inven-
tory (VMI) comes into play. Distinguished from the call-in
mode, vendors (logistics companies) provide integrated man-
agement for all their customers (suppliers and retailers) in
VMI mode. In other words, vendors are in charge of mon-
itoring their clients’ inventory levels, predicting product con-
sumption, scheduling replenishment, and planning delivery
routes. It is believed that the integration of information and
resources will bring benefits for both vendors and customers.

Inventory routing problem (IRP) is one of the most impor-
tant challenges to apply the VMI mode in supply chain man-
agement. It combines two classical optimization problems,
which are inventory problem and vehicle routing problem, re-
spectively. Regarding the inventory part, it aims to minimize
product backlog. Due to the risks for storing too many prod-
ucts that the commodities may expire, evaporate, be stolen,
or encounter other accidents, there will be inventory holding
costs proportional to the inventory level at each customer. As
for the routing part, it requires to reduce the traveling costs
which are usually measured by the total distance of the de-
livery routes. When the inventory management and the trans-
portation optimization is jointly considered in the IRP, the
entire planning horizon is divided into multiple independent
periods, we need to decide the amount of product to replen-
ish for each customer in each period, along with the delivery
route in each period, so that no customer runs out of stock
and the total cost for backlog and transportation is minimized.
These two factors often contradict to each other, because less
backlog means less quantity per delivery, which means more
frequent deliveries if the consumption holds, which increases
the traveling costs, and vice versa. Therefore, it is natural to
consider the inventory management and the vehicle routing
together, in order to balance and optimize the total costs.

As a challenging NP-hard problem [Coelho et al., 2013]
with valuable applications, IRP has been drawing attentions

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3430

from both industrial and academic communities. Commer-
cial software such as Aspen Fleet Optimizer was developed
and widely used in the petroleum industry [Becraft et al.,
2012]. Air Liquide proposed a complex inventory rout-
ing problem in its healthcare business as the topic of the
ROADEF/EURO Challenge 20161. It is also one of the topics
of the 12th DIMACS Implementation Challenge2. Apart from
the industrial applications, many researchers investigated the
IRP and its variants in recent decades. There are mainly
four characteristics that distinguishes different versions of
IRPs, which are fleet composition, planning horizon, de-
mand mode, and replenishment policy [Coelho et al., 2013],
respectively. The single-vehicle multi-period deterministic-
demand inventory routing problem under maximum-level
policy proposed in Bertazzi et al. [2002] is one of the most
representative and classical versions [Archetti et al., 2007;
Archetti et al., 2012; Coelho et al., 2012; Alvarez et al., 2018;
Chitsaz et al., 2019]. Based on this well-known IRP, several
variants concerning homogeneous fleet [Coelho and Laporte,
2013; Adulyasak et al., 2013; Coelho and Laporte, 2014;
Archetti et al., 2017] or multiple depots [Bertazzi et al., 2019]
have been widely studied. Regarding the solution methods,
several exact algorithms, heuristics, and hybrid algorithms
were proposed for solving the IRP. The exact algorithms
such as branch-and-cut algorithms [Archetti et al., 2007;
Coelho and Laporte, 2013; Avella et al., 2017] have made
great progress on solving small IRP instances. Desaulniers
et al. [2015] presented a branch-cut-and-price algorithm for
the IRP, which utilizes the column generation approach to
calculate the lower bound, and employs the branch-and-cut
algorithm to tighten the bound. In addition, several meta-
heuristic algorithms were proposed to tackle the IRP. Aksen
et al. [2014] defined multiple neighborhood structures and
integrated them into an adaptive large neighborhood search
algorithm to solve the IRP. Park et al. [2016] presented a ge-
netic algorithm inspired by the CPLEX optimizer. Iterated
local search and simulated annealing were also used for tack-
ling the IRP [Alvarez et al., 2018], and they can obtain satis-
factory solutions in relatively short time.

Recently, more and more hybrid algorithms demonstrate
their effectiveness in solving this intractable problem. These
algorithms usually decompose complex problems into sev-
eral sub-problems, and utilizes different kinds of methods
for solving these reduced problems in certain hierarchy. The
matheuristics, which integrate metaheuristic algorithms and
mathematical programming techniques, is one of the most
common and successful hybrid algorithms. For instance,
Archetti et al. [2012] proposed a hybrid heuristic for the
IRP, which uses the tabu search to find good solutions, and
refines these solutions by optimizing two mixed-integer pro-
gramming (MIP) models. Coelho et al. [2012] presented
an algorithm based on adaptive large neighborhood search
framework. It adopts a linear programming (LP) model to
determine delivery quantities for each neighboring solution,
and tunes the best solution found by another MIP model in
a specified frequency. Campbell and Savelsbergh [2004] de-

1http://www.roadef.org/challenge/2016/en/sujet.php
2http://dimacs.rutgers.edu/events/details?eID=1090

Period 1 Period 2 Period 3

Figure 1: Example of an IRP instance and its solution. The triangle
is the depot. The black nodes represent the visited clients in each pe-
riod and the white nodes are the unvisited ones. The gray, green, and
white bars stand for remaining inventory levels, delivered quantities,
and free capacities, respectively. The lines are the delivery routes.

composed the IRP into two phases. It first constructs high-
level base plan using an integer programming model, then
utilizes an insertion heuristic to generate the complete sched-
ule. In addition, Cordeau et al. [2015] solved the IRP by
a multi-phase hybrid algorithm. It determines replenishment
plans by a Lagrangian-based method in the first phase, gen-
erates vehicle routes by a constructive heuristic in the second
phase, and reoptimizes the solution via MIP.

This paper proposes a two-stage matheuristic (TSMH) al-
gorithm which consists of two optimization stages in differ-
ent granularities for the classical IRP. The TSMH algorithm
begins with a coarse-grained structural optimization which
determines the initial replenishment schedule. In the sec-
ond stage, the TSMH algorithm adopts a solution-based tabu
search procedure to bring sophisticated refinement to the de-
livery routes, timing, and quantities. In both stages, the pro-
posed algorithm employs both metaheuristics and mathemat-
ical programming to tackle the routing and inventory sub-
problems, respectively. Tested on two sets of totally 220
widely used instances of the IRP, the proposed TSMH al-
gorithm improves the best known results on 40 out of 60
large-scale instances and matches the records on most small
instances. Moreover, comprehensive tests and comparisons
demonstrate that the combination of the two stages and corre-
sponding techniques are essential for the proposed algorithm.

2 Classical Inventory Routing Problem
The classical inventory routing problem is to deliver prod-
ucts to a number of clients in multiple periods. It aims to
minimize the total inventory holding costs and vehicle travel-
ing costs, while preventing any customer from running out of
stock in each period. In order to accomplish this goal, a solu-
tion method needs to determine when, where, and how many
products at each delivery, as well as the sequence of visits to
each client in each period, as illustrated in Figure 1.

More precisely, the IRP problem is defined on an undi-
rected complete graph G = (V,E). V = {0, 1, ..., n} is
the set of vertices, where vertex 0 stands for the depot and
V ′ = V − {0} represents the client set. E = {(i, j) : i, j ∈
V, i 6= j} denotes the edge set, where a corresponding trav-
eling cost Cij is associated with each edge (i, j). There are
totally p periods in the planning horizon, and the capacity of

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3431

the vehicle is Q. The inventory holding cost and maximum
inventory level for each depot or client i ∈ V are Hi and
Ui, respectively. Within each period t ∈ T = {1, ..., p},
the depot produces rt0 units of products and client i ∈ V ′

consumes rti units of products. To keep it simple and clear,
we assume that the production and delivery always happen
before loading and consumption at each vertex, respectively.
This simplification follows the same convention in the pre-
vious works [Archetti et al., 2007; Archetti et al., 2012;
Coelho et al., 2012]. We define variable xti to be the quantity
of products delivered to vertex i ∈ V in period t ∈ T . Ob-
viously, xt0 is always non-positive since the vehicle can only
load instead of delivering products at depot. We use Boolean
variable ytij to denote if edge (i, j) exists in the delivery route
in period t ∈ T . Let variable Iti be the inventory level of ver-
tex i ∈ V at the end of period t ∈ T ∪ {0}, except that the
initial inventory level I0i is already known. Then, the classical
IRP can be formulated as the following MIP model.

min
∑

t∈T∪{0}

∑
i∈V

HiI
t
i +

∑
t∈T

∑
i∈V

∑
j∈V,j 6=i

Cijy
t
ij , (1)

s.t.
∑

j∈V,j 6=i

ytij =
∑

j∈V,j 6=i

ytji ≤ 1, ∀i ∈ V, ∀t ∈ T, (2)

∑
i,j∈S

ytij ≤ |S| − 1, ∀t ∈ T, ∀S is a subtour, (3)

0 ≤ xti ≤ Ui
∑

j∈V,j 6=i

ytij , ∀i ∈ V ′, ∀t ∈ T, (4)

xt0 +
∑
i∈V ′

xti = 0, ∀t ∈ T, (5)∑
i∈V ′

xti ≤ Q, ∀t ∈ T, (6)

Iti = It−1i + xti − rti , ∀i ∈ V, ∀t ∈ T, (7)

It−1i + xti ≤ Ui, ∀i ∈ V ′, ∀t ∈ T, (8)

It−10 + rt0 ≤ U0, ∀t ∈ T, (9)

0 ≤ Iti ≤ Ui, ∀i ∈ V, ∀t ∈ T, (10)

xti ∈ R, ytij ∈ {0, 1}, ∀i, j ∈ V, i 6= j, ∀t ∈ T. (11)

Objective (1) minimizes the sum of the inventory costs and
routing costs. Constraints (2) ensure that each vertex can be
visited at most once in each period, and its in-degree equals
to the out-degree. Constraints (3) are for subtour elimination
where a subtour is a cycle which does not start from the depot
[Dantzig et al., 1954]. Constraints (4) indicate that there can
be positive delivery quantity for each client in each period iff
the client is visited, and the delivery quantity must not exceed
the capacity of the client. Constraints (5) require that in each
period, the quantity loaded at the depot must match the total
quantity delivered to all clients. Constraints (6) guarantee that
the vehicle will never be overloaded. Constraints (7) are the
inventory conservation equalities. Constraints (8) and (9) im-
pose the capacity of each vertex. Constraints (10) forbid the
shortage at customers. Constraints (11) present the domains
of the decision variables.

3 Two-Stage Matheuristic Algorithm
The IRP integrates both inventory management and vehicle
routing, thus involves both continuous and discrete optimiza-
tions which are usually solved by different methodologies. As
a hybrid algorithm which combines the advantages of math-
ematical programming and metaheuristics, the matheuristic
algorithm is a promising approach for such kind of prob-
lems. Meanwhile, due to the complexity of the IRP, it is very
challenging to optimize the whole problem directly. There-
fore, the proposed TSMH algorithm consists of two stages
whose search granularities vary from high-level structure to
low-level details. Specifically, the first stage generates the
initial solution by row generation approach with additional
repairing procedure (Section 3.1). The second stage adopts a
solution-based tabu search procedure to implement the fine-
grained optimization (Section 3.2).

In order to find out a proper overall structure of the deliv-
ery schedule, the proposed algorithm relaxes the MIP model
for the IRP to obtain an easier subproblem which optimizes
the timing and the quantity of the deliveries while consider-
ing the routing as accurate as possible. Specifically, due to the
exponential complexity of the subtour elimination constraints
(3), relaxing them will greatly reduce the intractability of the
induced subproblem. However, once a solution for the re-
laxed model is found, the subtour elimination constraints will
be lazily added to claim its infeasibility. Although the re-
laxed solutions may not form connected tours, we can decide
whether a vertex i is visited or not in period t by examin-
ing Zti =

∑
j∈V,j 6=i y

t
ij . Furthermore, in each period, when

the vertices to visit (black nodes in Figure 1) are fixed, re-
pairing the route is equivalent to solving the traveling sales-
man problem (TSP) on the subgraph composed of the visited
vertices. The TSMH algorithm will repeat the above solve-
tighten-repair procedure until the time limit is reached.

When the quality of the best found solution gradually con-
verges in the first stage, the TSMH algorithm moves on to the
second stage. This stage employs a solution-based iterated
tabu search algorithm started from the best solution found so
far to carry out a fine-grained optimization. This tabu search
algorithm perturbs the current best solution when it fails to
improve the best solution found for a number of consecutive
iterations. Finally, the TSMH stops after the time limit is
reached and returns the best solution found so far.

3.1 Stage 1: Structural Optimization by
Relax-and-Repair Method

We consider a relaxed IRP (RIRP) model which consists of
Eqs. (1)-(2) and (4)-(11) in the first stage. As described in
Algorithm 1, the TSMH solves the RIRP model to obtain
relaxed solutions (line 3). In these solutions, the inventory-
related constraints are respected but there may be subtours
disconnected to the depot. Hence, for each period, we drop
the clients with zero delivery quantity or Zti = 0, and solve
the TSP on the remaining subgraph using Lin-Kernighan
heuristic [Lin and Kernighan, 1973] (line 4). This repair-
ing procedure is able to efficiently produce feasible solutions
while preserving the overall structure of the relaxed solutions.
If the cost of the repaired solution is less than the best solu-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3432

Algorithm 1 StructuralOptimization

Input: Instance I;
Output: Best found solution Sbest

1: Sbest ← ∅
2: repeat
3: Solve RIRP model to get a relaxed solution Srel
4: Repair the tours in Srel to get a feasible solution Scur
5: if f(Scur) < f(Sbest) then
6: Sbest ← Scur
7: end if
8: Add a constraint which eliminate the minimum sub-

tour (if there exists) to RIRP model
9: until time limit is reached or no subtour in Srel

tion found so far, the best solution will be updated (lines 5-7).
Next, one of the violated subtour elimination constraints in-
volving the least number of edges will be added to the RIRP
model as lazy constraints (line 11). After adding the lazy
constraints, TSMH resumes the optimization and iteratively
executes the above procedure until the time limit is reached
(line 2) or a feasible solution is found (lines 8-10). This stage
is able to produce good initial solutions, and it may directly
obtain the optimal solutions on some small instances.

3.2 Stage 2: Detailed Refinement by
Solution-based Tabu Search

This stage adopts a solution-based iterated tabu search [Lai et
al., 2018] to perform a fine-grained search starting from the
best solution obtained in the previous stage. Similar to typi-
cal tabu search algorithms, the proposed solution-based tabu
search iteratively evaluates the neighborhood of the current
solution and performs the best non-tabu neighborhood move.
If it is unable to improve the best solution found for a given
number of iterations, a perturbation procedure is launched.
The above procedures are executed repeatedly until the time
limit is reached. However, unlike the traditional attribute-
based tabu search, the proposed TSMH algorithm employs a
solution-based tabu strategy which records the complete in-
formation of each evaluated solution. If we regard the lim-
ited characteristics in the attribute-based tabu list as directions
or landmarks in the solution space, the ones in the solution-
based tabu list will be the exact coordinates. Next, we will
present comprehensive descriptions for the essential ingredi-
ents of the solution-based tabu search subroutine.

Neighborhood Structure and Evaluation
We define four neighborhood structures to optimize the de-
livery schedule. Unlike the classical ones for routing prob-
lems, these neighborhoods manipulate the timing of visits to
the clients (Zti) instead of reordering the routes. At each it-
eration of the tabu search, the current solution S is replaced
with its neighboring solution by performing the best moveM
selected from all the following neighborhoods.

• Addition operation Ma(t, i). Visit unvisited client i in
period t. There are O(pn) addition operations.

• Removal operation Mr(t, i). Cancel the existing visit to
client i in period t. There areO(pn) removal operations.

• Move operation Mm(t1, t2, i) = Ma(t1, i) +Mr(t2, i).
Visit client i in period t1 if it is not visited, and simul-
taneously cancel the existing visit to the same client in
period t2. There are O(p2n) move operations.
• Swap operation Ms(ti, tj , i, j) = Mm(tj , ti, i) +
Mm(ti, tj , j). Exchange the visits to a pair of clients in
a pair of periods where Ztii = Z

tj
j = 1, Z

tj
i = Ztij = 0.

There are O(p2n2) swap operations.
The neighborhood evaluation is the bottleneck of the tabu

search algorithm, since it evaluates a lot of moves but per-
forms only one of them at each iteration. In order to improve
the search efficiency, our TSMH algorithm adopts a filtering
technique and only applies exact evaluations on promising
moves. The proposed filtering technique evaluates the entire
neighborhood in an incremental and approximate way, and
then it abandons the moves with poor approximate objective
improvements. Specifically, the approximate objective func-
tion only considers the routing costs, and the objective im-
provements ∆M of move M are calculated as Eqs. (12).

∆Ma(t, i) = min
(i1,i2)∈tour

{Ci1i + Cii2 − Ci1i2},

∆Mr(t, i) = Ci1i2 − Ci1i − Cii2 ,

∆Mm(t1, t2, i) = ∆Ma(t1, i) + ∆Mr(t2, i),

∆Ms(ti, tj , i, j) = ∆Mm(tj , ti, i) + ∆Mm(ti, tj , j).

(12)

Eqs. (12) are incremental evaluations which assume that
only the predecessors i1 and successors i2 of the added or
removed visits will be affected in the original tour. For ex-
ample, when removing client i from tour (..., i1, i, i2, ...) in
period t, it assumes that the optimal tour for the resulting ver-
tex combination is (..., i1, i2, ...). Based on Eqs. (12), we can
sort the neighborhood moves by ∆M values in an ascending
order, and only take the top-m elite moves into further consid-
eration. Thus, the filtering technique can efficiently identify
the non-promising moves, at the cost of possible inaccuracy.

Next, the proposed TSMH figures out the exact holding
costs of the elite solutions. Since the visiting states are the
only band to connect the inventory and routing subproblems
as Eqs. (4) impose, the holding and routing costs are indepen-
dent to each other once the visiting states Zti are fixed, which
is true at this moment. So, we just leave out the routing part
and minimize the inventory holding costs fh(S) by solving
the LP model composed of (5)-(11) and (13)-(14). Note that
we treat the move as the worst if its LP model is infeasible.

min fh(S) =
∑

t∈T∪{0}

∑
i∈V

HiI
t
i (13)

0 ≤ xti ≤ UiZti , ∀i ∈ V ′, ∀t ∈ T (14)
Finally, we make the move with the smallest fh(S⊕M) +

∆M value and re-optimize the routes in each affected period
using Lin-Kernighan heuristic. As discussed in Section 3.1,
the route optimization in period t is equivalent to solving the
TSP in a subgraph each of whose vertex i satisfies Zti = 1.

Solution-based Tabu Strategy
In order to jump out of the local optima during the neigh-
borhood search, we integrate a solution-based tabu strat-
egy into the TSMH algorithm. Comparing to its classical

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3433

attribute-based counterpart, the solution-based tabu strategy
records more complete information of each evaluated solu-
tion. Therefore, we can omit the tabu tenure parameter and
prohibit visiting the evaluated solutions forever. This feature
overcomes the drawbacks of the attribute-based tabu search
that inappropriate parameter settings may falsely forbid some
promising moves or accept moving back to visited solutions.
For efficiency consideration, we only store the hash values
of the evaluated solutions instead of the entire solutions. We
define a hash function h : S → {0, 1, 2, ...,K − 1} to map
the solution vector S into non-negative integers ranging from
0 to K − 1. Then the tabu list is implemented by a Boolean
vector B containing K entries, where Bk is true indicates
that the solution with the hash value h(S) = k is in the tabu
state. Due to the possibility of hash collision, we employ
multiple hash functions hj and corresponding tabu lists Bj
for j = 1, 2, ..., J to improve the robustness of the solution-
based tabu strategy. In the proposed TSMH algorithm, we
take J = 3, and a solution S is in tabu state iff

∧J
j=1B

j
hj(S) is

true. Correspondingly, we need to set the above three entries
to true for each evaluated solution. We define hash function
hj as follows, where γj is a parameter.

hj(S) =
∑
t∈T

∑
i∈V ′

b(tn+ i)
γjcZti mod K, ∀j ∈ J (15)

Perturbation Operator
When the tabu search fails to improve the current best solu-
tion for consecutive α iterations, TSMH utilizes a perturba-
tion operator to escape from the local optima. The pertur-
bation starts from the best solution found so far, and succes-
sively performs πa addition, πr removal, and πm move op-
erations. Each operation is selected from all neighborhood
moves in the corresponding neighborhood from a uniform
distribution. In addition, an operation that neutralizes the ef-
fect of another one will not be selected. If the resulting solu-
tion is infeasible or in tabu state, the perturbation will restart
until a proper solution is obtained.

4 Computational Experiment and Analysis
4.1 Experimental Protocols
The proposed TSMH algorithm is evaluated on two sets of
most commonly used datasets, which are 160 small instances
proposed by Archetti et al. [2007] and 60 large ones proposed
by Archetti et al. [2012], respectively. In the small-scale
dataset, there are 100 three-period instances with 5, 10, ..., 50
clients and 60 six-period ones whose numbers of clients are
5, 10, ..., 30. The large instances consist of 6 periods and
50, 100, 200 clients. Each configuration can be further di-
vided into two groups according to the distributions of their
unit inventory costs, which are [0.01, 0.05] (low cost) and
[0.1, 0.5] (high cost), respectively. In addition, the traveling
cost between each pair of vertices i, j is calculated by round-
ing the Euclidean distance between them.

Our TSMH algorithm is developed in C++ and tested on
Intel Xeon E5-2698 v3 2.30GHz CPU. The MIP models are
solved by Gurobi 8.0 [Gurobi Optimization, 2018], and the
TSP subproblems are solved by LKH3 [Helsgaun, 2017]. We

Parameter Description Value
m Maximal number of elite neighborhood moves 2p

√
n

α Maximal number of non-improving moves 25
K Range of hash values 108

γ1, γ2, γ3 Parameters for the hash functions 1.8, 2.4, 3.0
πa Number of addition operations in perturbation {2, 3}
πr Number of removal operations in perturbation {1, 2}
πm Number of move operations in perturbation {4, 5, 6}

Table 1: Parameter settings.

Instance group CL-BC HAIR TSMH

Scale p Cost Count #best Gap (%) Time #best Gap (%) Time #best Gap (%) Time

Small 3 low 50 50 0.000 10 49 0.000 262 49 0.001 18
Small 3 high 50 50 0.000 10 48 0.001 274 49 0.000 37
Small 6 low 30 30 0.000 37 12 0.121 571 27 0.019 330
Small 6 high 30 30 0.000 29 11 0.165 490 27 0.005 435
Large 6 low 30 13 14.900 14400 2 0.440 - 18 0.070 4567
Large 6 high 30 13 7.230 14400 1 0.350 - 22 0.040 3642
Sum/average 220 186 3.018 3942 123 0.147 - 192 0.019 1239

Table 2: Average computational results on all groups of instances.

perform 20 independent runs for each instance under a one-
hour time limit and record the best results. We also extend
the time limit to 3 hours to investigate the potential of the
proposed TSMH algorithm. The time limit for the first stage
is 1/6 of the total time limit. The values of other parameters
for TSMH are listed in Table 1.

4.2 Computational Results
In order to justify the effectiveness and efficiency of the pro-
posed algorithm, we compare TSMH with the best known
exact algorithm CL-BC [Coelho and Laporte, 2013; Coelho
and Laporte, 2014] and heuristic algorithm HAIR [Archetti
et al., 2012]. The computational platforms for CL-BC and
HAIR are Xeon 2.66GHz and Intel Dual Core 1.86GHz CPU,
respectively. By assuming the hardware performance is pro-
portional to the CPU frequency, we will scale down the com-
putational time of HAIR to 80% for a fair comparison.

The overall computational results of each group of in-
stances are shown in Table 2. Column #best indicates the
number of instances where the corresponding algorithm can
match the best known objective values. Column Gap reports
the average gap between the best result obtained by each al-
gorithm and the best known one. Column Time gives the nor-
malized average computational time in seconds for obtain-
ing the reported results. From Table 2 we can observe that,
TSMH is a robust algorithm whose average gap on all 220
instances are 7 and 150 times smaller than HAIR and CL-
BC. Moreover, the proposed algorithm is highly scalable that
it obtains most best known solutions on the two sets of large
instances. In addition, TSMH is also very efficient as the av-
erage computational time is 3 times shorter than CL-BC.

Tables 3 and 4 present the detailed results and compar-
isons on the 60 large instances. Column Instance gives the
reformatted name of each large instance according to their
characteristics. For example, p6c2n50.4 indicates the fourth
instance where there are 6 periods and 50 customers and the
scale of the unit inventory costs are 10−2 (low cost). The
next five columns report the objective values obtained by

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3434

Instance
CL-BC HAIR TSMH

4 hours 1 hour >1 hour 1 hour 3 hours Time (s)
p6c1n50.1 30189.40 30225.36 30225.36 30189.60 30189.60 2208.20
p6c1n50.2 29790.00 29856.26 29856.26 29790.00 29790.00 2034.80
p6c1n50.3 29790.90 29904.15 29904.15 29790.90 29790.90 1209.52
p6c1n50.4 31518.30 31677.87 31677.87 31542.30 31542.30 1978.24
p6c1n50.5 29240.40 29400.33 29400.33 29241.60 29241.60 2029.23
p6c1n50.6 31903.10 32195.51 31946.33 31980.00 31903.10 7616.49
p6c1n50.7 29734.50 29768.03 29768.03 29736.80 29736.80 2458.45
p6c1n50.8 25954.20 26521.96 26521.96 25954.20 25954.20 2165.80
p6c1n50.9 30192.90 30283.90 30283.90 30192.90 30192.90 1769.71
p6c1n50.10 31338.20 31397.84 31397.84 31338.20 31338.20 1696.02
p6c1n100.1 57459.20 57721.23 57721.23 57498.30 57498.30 3139.07
p6c1n100.2 53510.10 53432.80 53432.80 53452.00 53412.70 9907.20
p6c1n100.3 58505.10 58598.93 58598.93 58502.60 58502.60 3369.19
p6c1n100.4 51554.20 52030.59 52030.59 51739.20 51739.20 3157.25
p6c1n100.5 57976.50 58258.92 58258.92 58144.00 58144.00 2653.80
p6c1n100.6 55087.80 55280.01 55280.01 55074.00 55074.00 3343.64
p6c1n100.7 56076.90 56398.19 56398.19 56074.00 56074.00 3391.99
p6c1n100.8 56057.10 55722.32 55384.47 55060.95 55060.95 3298.24
p6c1n100.9 59425.90 58729.94 58729.94 58496.60 58496.60 3512.04
p6c1n100.10 56588.30 56644.22 56644.22 56448.10 56448.10 2590.43
p6c1n200.1 136337.00 110790.39 110790.39 110709.97 110709.97 2762.99
p6c1n200.2 141543.00 112424.46 112401.98 112464.00 112385.00 8292.39
p6c1n200.3 123147.00 108119.61 108119.61 107865.00 107865.00 3371.67
p6c1n200.4 129615.00 109309.48 109309.48 108852.00 108852.00 3510.55
p6c1n200.5 126552.00 109104.89 109083.07 109021.00 109021.00 3205.40
p6c1n200.6 136513.00 109071.20 109071.20 109396.00 109348.00 10492.80
p6c1n200.7 111186.00 97749.52 97749.52 97720.60 97720.60 3572.83
p6c1n200.8 115946.00 102194.63 102194.63 102066.00 102066.00 3542.09
p6c1n200.9 136819.00 104877.49 104877.49 104723.00 104723.00 3475.74
p6c1n200.10 142796.00 109066.98 109045.17 108765.00 108765.00 3496.09
#best 13/30 1/30 1/30 19/30 22/30
Average 72078.23 64558.57 64536.80 64394.29 64386.19 3641.73

Table 3: Large instances with high inventory costs.

Instance
CL-BC HAIR TSMH

4 hours 1 hour >1 hour 1 hour 3 hours Time (s)
p6c2n50.1 9966.14 9974.38 9974.38 9971.71 9971.71 2241.31
p6c2n50.2 10632.00 10632.24 10632.24 10633.80 10632.00 4506.10
p6c2n50.3 10510.70 10548.98 10548.98 10511.80 10511.80 1884.15
p6c2n50.4 10513.40 10555.38 10555.38 10517.90 10517.90 1362.32
p6c2n50.5 10113.00 10137.40 10137.40 10113.80 10113.80 2265.85
p6c2n50.6 10148.02 10166.10 10166.10 10151.20 10151.20 2306.24
p6c2n50.7 9982.20 10012.68 10012.68 9984.53 9984.53 2215.91
p6c2n50.8 10299.10 10547.97 10547.97 10299.10 10299.10 2183.55
p6c2n50.9 10009.90 10052.78 10052.78 10022.60 10022.60 1809.06
p6c2n50.10 9659.20 9727.74 9727.74 9659.20 9659.20 1866.08
p6c2n100.1 15649.30 15784.02 15784.02 15684.80 15684.80 3204.62
p6c2n100.2 14697.30 14754.10 14754.10 14632.60 14632.60 3137.05
p6c2n100.3 16154.60 15649.44 15649.44 15630.90 15630.90 2271.17
p6c2n100.4 14644.30 14755.76 14755.76 14737.30 14737.30 3514.99
p6c2n100.5 15234.80 15412.83 15412.83 15314.50 15314.50 3197.03
p6c2n100.6 15769.40 15327.08 15327.08 15252.00 15252.00 3496.13
p6c2n100.7 15537.70 15468.98 15468.98 15374.60 15374.60 3585.08
p6c2n100.8 15279.20 15078.16 15078.16 14996.70 14996.70 3604.63
p6c2n100.9 17189.60 15628.66 15628.66 15584.20 15584.20 3376.60
p6c2n100.10 16145.00 15495.87 15495.87 15467.30 15467.30 3591.65
p6c2n200.1 32683.30 24353.40 24353.40 24413.90 24285.20 9597.22
p6c2n200.2 34033.40 24610.96 24576.55 24591.10 24484.60 10497.20
p6c2n200.3 33317.20 23861.65 23861.65 23941.00 23793.80 10626.50
p6c2n200.4 34004.10 24329.66 24232.73 24286.80 24175.40 8334.02
p6c2n200.5 35486.90 24193.98 24193.98 24337.90 24223.60 8339.13
p6c2n200.6 33359.50 23651.81 23651.81 23633.40 23633.40 3410.45
p6c2n200.7 32773.90 23527.12 23527.12 23388.60 23388.60 2986.97
p6c2n200.8 33488.70 23311.73 23230.42 23341.90 23322.80 9182.80
p6c2n200.9 35172.60 23846.19 23846.19 24006.90 23840.80 8802.92
p6c2n200.10 34871.50 23609.34 23609.34 23653.40 23516.40 9627.85
#best 13/30 1/30 2/30 11/30 18/30
Average 19910.87 16500.21 16493.12 16471.18 16440.11 4567.49

Table 4: Large instances with low inventory costs.

p6c1n50 p6c1n100 p6c1n200 p6c2n50 p6c2n100 p6c2n200
Instance group

0

1

2

3

4

5

6

7

8

Ga
p

to
 th

e
be

st
 k

no
wn

 re
su

lts
 (%

) TSMH
TSMH-1
TSMH-2

Figure 2: Comparing TSMH to its two simplified versions.

each algorithm under the specified time limits. Column Time
presents the computational time taken by TSMH to obtain its
best results. The numbers in bold indicate the best known
results. As we can see, although CL-BC obtains the best re-
sults on all 20 instances with 50 clients under a four-hour
time limit, TSMH shows its advantage on larger instances.
As a result, TSMH obtains the best known results on 40 in-
stances, while CL-BC only found 26 ones. Regarding the
one-hour time limit, TSMH outperforms HAIR in terms of
both the number of best solutions and the average objective
values. In sum, the proposed TSMH algorithm is competitive
comparing to the state-of-the-art algorithms in the literature.

4.3 Effectiveness of Combining Two Stages
To demonstrate the importance of each stage, we conduct ex-
tensive experiments to compare the complete TSMH algo-
rithm with its two simplified versions TSMH-1 and TSMH-2
under one-hour time limit. TSMH-1 only includes the struc-
tural optimization stage. TSMH-2 generates the initial so-
lution by solving the RIRP model without adding lazy con-
straints, and incorporates the detailed refinement stage based
on the tabu search algorithm. Figure 2 plots the distribution
of the solution qualities obtained by these three versions. We
can observe that it fails to match any best known result if
there is only a single stage. In addition, the solution-based
tabu search obtains relatively better results comparing to the
relax-and-repair method. These results highlight the merit of
the hybridization of different methodologies.

5 Conclusion
We proposed a two-stage matheuristic algorithm which in-
cludes a structural optimization stage and a detailed refine-
ment stage. Tested on 220 most commonly used instances,
the TSMH algorithm improves the best known results on 40
out of 60 large instances. In addition, extensive experiments
show that the combination of the two stages is essential to the
performance of TSMH.

Acknowledgments
Research partially supported by Alkaid lab of Huawei Cloud.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3435

References
[Adulyasak et al., 2013] Yossiri Adulyasak, Jean-François

Cordeau, and Raf Jans. Formulations and branch-and-
cut algorithms for multivehicle production and inventory
routing problems. INFORMS Journal on Computing,
26(1):103–120, 2013.

[Aksen et al., 2014] Deniz Aksen, Onur Kaya, F Sibel
Salman, and Özge Tüncel. An adaptive large neighbor-
hood search algorithm for a selective and periodic inven-
tory routing problem. European Journal of Operational
Research, 239(2):413–426, 2014.

[Alvarez et al., 2018] Aldair Alvarez, Pedro Munari, and
Reinaldo Morabito. Iterated local search and simu-
lated annealing algorithms for the inventory routing prob-
lem. International Transactions in Operational Research,
25(6):1785–1809, 2018.

[Archetti et al., 2007] Claudia Archetti, Luca Bertazzi,
Gilbert Laporte, and Maria Grazia Speranza. A branch-
and-cut algorithm for a vendor-managed inventory-routing
problem. Transportation Science, 41(3):382–391, 2007.

[Archetti et al., 2012] Claudia Archetti, Luca Bertazzi,
Alain Hertz, and M Grazia Speranza. A hybrid heuristic
for an inventory routing problem. INFORMS Journal on
Computing, 24(1):101–116, 2012.

[Archetti et al., 2017] Claudia Archetti, Natashia Boland,
and M Grazia Speranza. A matheuristic for the multive-
hicle inventory routing problem. INFORMS Journal on
Computing, 29(3):377–387, 2017.

[Avella et al., 2017] Pasquale Avella, Maurizio Boccia, and
Laurence A Wolsey. Single-period cutting planes for
inventory routing problems. Transportation Science,
52(3):497–508, 2017.

[Becraft et al., 2012] Warren R Becraft, Dom Kalasih,
Stephen Brooks, et al. Replenishment planning and sec-
ondary petroleum distribution optimisation at z energy. In
Chemeca 2012: Quality of life through chemical engineer-
ing. Engineers Australia, 2012.

[Bertazzi et al., 2002] Luca Bertazzi, Giuseppe Paletta, and
M Grazia Speranza. Deterministic order-up-to level poli-
cies in an inventory routing problem. Transportation Sci-
ence, 36(1):119–132, 2002.

[Bertazzi et al., 2019] Luca Bertazzi, Leandro C Coelho,
Annarita De Maio, and Demetrio Laganà. A matheuris-
tic algorithm for the multi-depot inventory routing prob-
lem. Transportation Research Part E: Logistics and Trans-
portation Review, 122:524–544, 2019.

[Campbell and Savelsbergh, 2004] Ann Melissa Campbell
and Martin WP Savelsbergh. A decomposition approach
for the inventory-routing problem. Transportation Sci-
ence, 38(4):488–502, 2004.

[Chitsaz et al., 2019] Masoud Chitsaz, Jean-François
Cordeau, and Raf Jans. A unified decomposition
matheuristic for assembly, production, and inventory rout-
ing. INFORMS Journal on Computing, 31(1):134–152,
2019.

[Coelho and Laporte, 2013] Leandro C Coelho and Gilbert
Laporte. The exact solution of several classes of inventory-
routing problems. Computers & Operations Research,
40(2):558–565, 2013.

[Coelho and Laporte, 2014] Leandro C Coelho and Gilbert
Laporte. Improved solutions for inventory-routing prob-
lems through valid inequalities and input ordering. Inter-
national Journal of Production Economics, 155:391–397,
2014.

[Coelho et al., 2012] Leandro C Coelho, Jean-François
Cordeau, and Gilbert Laporte. Consistency in multi-
vehicle inventory-routing. Transportation Research Part
C: Emerging Technologies, 24:270–287, 2012.

[Coelho et al., 2013] Leandro C Coelho, Jean-François
Cordeau, and Gilbert Laporte. Thirty years of inventory
routing. Transportation Science, 48(1):1–19, 2013.

[Cordeau et al., 2015] Jean-François Cordeau, Demetrio La-
ganà, Roberto Musmanno, and Francesca Vocaturo. A
decomposition-based heuristic for the multiple-product
inventory-routing problem. Computers & Operations Re-
search, 55:153–166, 2015.

[Dantzig et al., 1954] George Dantzig, Ray Fulkerson, and
Selmer Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the Operations Research
Society of America, 2(4):393–410, 1954.

[Desaulniers et al., 2015] Guy Desaulniers, Jørgen G Rakke,
and Leandro C Coelho. A branch-price-and-cut algorithm
for the inventory-routing problem. Transportation Sci-
ence, 50(3):1060–1076, 2015.

[Gurobi Optimization, 2018] LLC. Gurobi Optimization.
Gurobi optimizer reference manual, 2018.

[Helsgaun, 2017] Keld Helsgaun. An extension of the lin-
kernighan-helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Technical report,
Roskilde University, 2017.

[Lai et al., 2018] Xiangjing Lai, Dong Yue, Jin-Kao Hao,
and Fred Glover. Solution-based tabu search for the maxi-
mum min-sum dispersion problem. Information Sciences,
441:79–94, 2018.

[Lin and Kernighan, 1973] Shen Lin and Brian W
Kernighan. An effective heuristic algorithm for the
traveling-salesman problem. Operations Research,
21(2):498–516, 1973.

[Park et al., 2016] Yang-Byung Park, Jun-Su Yoo, and Hae-
Soo Park. A genetic algorithm for the vendor-managed
inventory routing problem with lost sales. Expert Systems
with Applications, 53:149–159, 2016.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3436

